
The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, at clinic@blong.com

or write/fax us at The Delphi Magazine

Message Dialog Buttons

QI want to use MessageDlg but
it is too inflexible. I can han-

dle the fact that the caption cannot
be fully customised, but I need to
be able to specify which will be the
default button. Is there a trick to
this or must I use the Application
object’s MessageBox method?

AI can see your point. If you
were to bring up a message

box saying Format hard disk? you
wouldn’t want the default to be Yes.
The routines as they stand do not
support custom default buttons:
they always default to the first one
and the order of the buttons is not
under your control. However, Mes-
sageDlg, MessageDlgPos, ShowMessage
and ShowMessagePos all make use of
the CreateMessageDialog routine
which is called to make the mes-
sage form (but not display it). We
can re-implement MessageDlg and
MessageDlgPos by cribbing the
Borland code and inserting some
extra lines to do the desired deed.
The new code will just loop
through all the controls on the
form hunting out the intended
default and then make it so.

Listing 1 shows the MsgDlgs unit
that implements the two updated
routines. Notice that they both
take an extra parameter of type
TModalResult: the same sort of
values as they return when a

button is pushed. So, if you wanted
a message box with Yes and No but-
tons, with a default of No, you could
use the code snippet in Listing 2
which would give you the message
box in Figure 1 (if you were running
Delphi 1). [See also Steven Colagio-
vanni’s article in Issue 18. Editor]

Win32 Data Type Problems

QI wish to use a “critical
section” in my program (I

have encountered these in C++).
When I try to declare a variable of
type CRITICAL_SECTION (as specified
by the online help) I get a compiler
error. What’s wrong?

AThe Win32 help file supplied
with Delphi 2 and 3 is the

same file that Microsoft give
Borland to distribute: Borland do
not change it. This is why all the API

help is given in C syntax. When
Borland translate the C Windows
import headers into Pascal, they
sometimes change the data types
to make them more Pascal like. One
example of this is CRITICAL_SECTION
which in Delphi is actually defined
as TRTLCriticalSection.

The fact that you didn’t know
this implies you are using Delphi 2,
since Delphi 3’s Code Parameters
option would give the game away.
When you type in an API that uses
a critical section (such as Enter-
CriticalSection) and type the open
parenthesis a tooltip appears
showing the full parameter list as it
appears in its Delphi declaration
(see Figure 2).

If you are using Delphi 1 or 2 then
you will need to look at the
available source code. The most
common APIs are declared in
Delphi 1’s WinProcs unit and all the

➤ Figure 1

function MessageDlgDef(const Msg: string; AType: TMsgDlgType; AButtons:
 TMsgDlgButtons; DefButton: TModalResult; HelpCtx: Longint): TModalResult;
begin
 Result := MessageDlgDefPos(Msg, AType, AButtons, DefButton, HelpCtx, -1, -1);
end;
function MessageDlgDefPos(const Msg: string; AType: TMsgDlgType; AButtons:
 TMsgDlgButtons; DefButton: TModalResult; HelpCtx: Longint; X, Y: Integer):
 TModalResult;
var I: Integer;
begin
 Result := 0;
 with CreateMessageDialog(Msg, AType, AButtons) do
 try
 HelpContext := HelpCtx;
 if X > -1 then Left := X;
 if Y > -1 then Top := Y;
 ScaleBy(Screen.PixelsPerInch, 96);
 { Change the default button }
 for I := 0 to Pred(ComponentCount) do
 if Components[I] is TButton then
 if TButton(Components[I]).ModalResult = DefButton then
 ActiveControl := TButton(Components[I]);
 Result := ShowModal;
 finally
 Free;
 end;
end;

➤ Listing 1

if MessageDlgDef(’Shall I beep?’, mtConfirmation, [mbYes, mbNo], mrNo, 0) = mrYes
then
 MessageBeep(Cardinal(-1))

➤ Listing 2

July 1997 The Delphi Magazine 53

Windows data types are in Delphi
1’s WinTypes unit. In Delphi 2 (and
3) these are merged into the large
Windows unit. If you don’t have the
source code, look at WINPROCS.INT
or WINDOWS.INT file from Delphi’s
DOC subdirectory. Otherwise open
up WINPROCS.PAS or WINDOWS.PAS
from Delphi’s SOURCE\RTL\WIN
subdirectory.

Delphi 1 Stay On Top

QI have a stay-on-top form
with a TDBLookupCombo on it.

When I try and drop its listbox part
down, nothing happens. When the
form’s FormStyle is set back to
fsNormal all works well again. Is this
a known problem?

AYes, this is a known bug.
Delphi 2 users don’t tend to

use TDBLookupCombo controls: they
use the new TDBLookupComboBox
components. The problem occurs
because the TDBLookupCombo is a
fake combobox made from an edit
and a listbox (TPopupGrid actually).
Since the listbox is a separate win-
dow, not a child of the form (to
allow it to be displayed partially
outside the form), when the form is
set to stay on top the listbox gets
obscured by it (see Figure 3).

To fix it, you need to iterate
through TDBLookupCombo’s Compo-
nents array until you find a TPopup-
Grid. When you do, use its window
handle and call SetWindowPos to
make it also a stay on top listbox.
Listing 3 shows the OnCreate
handler from the DBCOMBO.DPR
project on this month’s disk. This
turns Figure 3 into Figure 4.

Delphi 32 Locate Method

QI am having trouble calling
Locate on a TTable in Delphi

2. It is fine when trying to search for
something with a simple single-
field search, but I cannot see how
to use it to search for values from
more than one field at a time.

ALocate takes three parame-
ters as shown in this declara-

tion from the Delphi help:

function Locate(
 const KeyFields: string;
 const KeyValues: Variant;
 Options: TLocateOptions):
 Boolean;

The first parameter is a semicolon
separated list of field names and
the second parameter is a variant
designed to take field values to
search for. If there is more than one
field, then the parameter must rep-

resent a variant array. This is easy
to set up using the VarArrayOf func-
tion, which is designed to manufac-
ture a one-dimensional variant
array. A sample program that calls
Locate on two fields of the Customer
table is supplied as LOCATE.DPR
(see Figure 5). The Search button
searches for the record with the
specified customer number and
company name using the code in
Listing 4 (note that a partial
company can be entered).

➤ Figure 2

➤ Figure 3 ➤ Figure 4

procedure TForm1.FormCreate(Sender: TObject);
var Loop: Integer;
begin
 if FormStyle = fsStayOnTop then
 with DBLookupCombo1 do
 for Loop := 0 to ComponentCount - 1 do
 if Components[Loop] is TPopupGrid then
 with TPopupGrid(Components[Loop]) do
 SetWindowPos(Handle, HWnd_TopMost,
 0, 0, 0, 0, swp_NoMove or swp_NoSize)
end;

➤ Listing 3

if not Table1.Locate(
 ’CustNo;Company’,
 VarArrayOf([EdtCustNo.Text,
 EdtCompany.Text]),
 [loPartialKey,
 loCaseInsensitive]) then
 raise Exception.Create(
 ’Search values not found’)

➤ Listing 4

➤ Figure 5

54 The Delphi Magazine Issue 23

Win32 Help

QI know I can generate a full-
text search database for my

Win32 API help file, but is there any
other way of making the informa-
tion more accessible for general
browsing? I recall the Delphi 1
Windows API help file had a useful
Overviews topic (amongst others)
that showed many links to other
useful areas in the help file.

AThe 16-bit API help file had
many useful topics that

could be found by starting at the
contents page. It was easy to get to
the individual 16-bit help files’ con-
tents pages as there was an ever-
present Contents button. The best
approach with the 32-bit help files
is to load them up manually, rather
than accessing them through the
help system. Use Windows
Explorer and navigate to Delphi’s
HELP subdirectory. Double-click
on WIN32.HLP and you are pre-
sented with its contents page
showing lots of interesting
categories.

ShowWindow Problem

QI have a need for my applica-
tion to manipulate other ap-

plications. Occasionally the other
application is written in Delphi and
it is here that I find my problem. I
sometimes need to activate a win-
dow in the target app, which I do
with ShowWindow. If the target app is
minimised and I show the main
form window it does get restored
but the minimise button no longer
functions.

AThis goes back to the peren-
nial issue of Delphi applica-

tions having an additional window
(maintained by the Application ob-
ject) that does lots of special things
to make a Delphi application act
generally Windows-like. However,
because this window exists, cer-
tain API operations need to take
special care when talking directly
to forms. In short, ShowWindow is not
enough.

When a Delphi application is
minimised by minimising the main
form, all forms that are open are

simply hidden. The icon that is dis-
played to represent the application
is in fact an iconic view of the Ap-
plication window. When any other
form is minimised it acts normally.

If another app needs to activate
the main form then it must first
restore the application from its
minimised state. This can be done
by sending a wm_SysCommand mes-
sage to the Application window
with a parameter of sc_Restore. It is
always desirable to come up with
some general solution to a prob-
lem, so Listing 5 has a procedure
called ActivateWindow that takes a
window caption and a window
class name (and shows some sam-
ple calls to it). The function en-
deavours to activate the specified
window, taking into account that it
might be minimised and also that it
might be in a Delphi application.

Notice that FindWindow is used to
locate the target window. Delphi
forms are not child windows, they
are top level popup windows but
which have a parent window (the
Application window). Since Find-
Window only works on top level win-
dows (not child windows) we know
that if it has a parent there is a good
chance that it is a Delphi form. This
rule isn’t exactly foolproof, but

generally non-Delphi apps make
parent-less top level windows.

If a parent window is found, it is
restored. The target window is also
restored and brought to the front.
This should work in all cases (I did
some reasonably thorough test-
ing), but I found one limitation with
it. If the code is compiled in a
Delphi 1 app and is used to activate
a non-main form in a minimised 32-
bit Delphi app, the form will be
brought to the foreground, but will
not have the focus. Focus is left on
the main form. This is despite the
Windows API help saying that
BringWindowToTop “activates pop-
up, top-level, and MDI child
windows.”

Projects APP1.DPR and APP2.DPR
on the disk show how this routine
is used. APP1 activates the two
forms in APP2 as well as activating
Excel if found.

Hi MOM!

QI am trying to write a little
project similar to the

Microsoft Office Manager that
launches applications. It’s
basically a form with a few speed
buttons that run Word, Excel etc. I
need to check if the application

procedure ActivateWindow(Caption, ClassName: PChar);
var FormWnd, AppWnd: HWnd;
begin
 FormWnd := FindWindow(ClassName, Caption);
 if FormWnd = 0 then
 raise Exception.Create(’Cannot find window’);
{$ifdef Win32}
 { Having found the form, now find the Application window }
 { Can’t reliably use GetParent, so... }
 AppWnd := GetWindowLong(FormWnd, gwl_HWndParent);
 { Tell the Delphi Application window to pop up in case it }
 { is minimised. Bear in mind that FindWindow only works on }
 { top-level windows, not child windows. Delphi forms are }
 { top-level popup windows which have parents, so the following }
 { check should only try and restore a parent window if it }
 { is a Delphi app }
 if (AppWnd <> HWnd_Desktop) and IsIconic(AppWnd) then
 SendMessage(AppWnd, wm_SysCommand, sc_Restore, 0);
 { Tell the form window to pop up if it is minimised }
 if IsIconic(FormWnd) then
 SendMessage(FormWnd, wm_SysCommand, sc_Restore, 0);
 { Make the target form be in front and active }
 SetForegroundWindow(FormWnd);
{$else}
 AppWnd := GetWindowWord(FormWnd, gww_HWndParent);
 if (AppWnd <> HWnd_Desktop) and IsIconic(AppWnd) then
 SendMessage(AppWnd, wm_SysCommand, sc_Restore, 0);
 if IsIconic(FormWnd) then
 SendMessage(FormWnd, wm_SysCommand, sc_Restore, 0);
 BringWindowToTop(FormWnd);
{$endif}
end;
...
ActivateWindow(’MainForm’, ’TMainForm’);
...
ActivateWindow(’SecondaryForm’, ’TSecondaryForm’);
...
ActivateWindow(’Microsoft Excel’, ’XLMAIN’);

➤ Listing 5

56 The Delphi Magazine Issue 23

(eg Excel) is already running and if
it is switch over to it. If it is not
running I need to start the app. I
cannot find how to test that Excel
is running and then switch to it.

AIt seems like half of the
answer to this question has

already been dealt with in the
previous section (ShowWindow
Problem). The idea is to try and find
a window in the target app that has
certain known attributes. When
you search for a window (typically
using FindWindow) you can specify a
window caption and/or a window
class name to search for. The
trouble with window captions is
that they tend to get modified dur-
ing a program’s lifetime. Excel’s
main window might start out with
the caption Microsoft Excel but it
might change to Microsoft Excel -
Sheet1. Windows class names are
constant, however.

So we can search for a window
class name and possibly check the
caption if we know that some of it
might be constant. If the window is
not found, we launch the applica-
tion. The ActivateWindow function
from the previous section does the
searching and activation if found. If
it does not find the target window,
it raises an exception. Note that if
you wish to use FindWindow to

search for a class name but no par-
ticular caption, then you must pass
nil as the value for the PChar Cap-
tion parameter, not a pointer to an
empty string. This is why the
ActivateWindow routine takes un-
friendly PChar parameters instead
of nice strings.

We have a remaining question
here though. How do we know what
window class name is used by an
application? The answer is to use
WinSight, which lists all the
windows that currently exist and
gives details on their positions,
class names, captions, parents and
children (see Figure 6). WinSight
tells me that my copy of Excel 3 has
a main window class name of
XLMAIN where Word 6 has OpusApp
(these may well vary from version
to version, although it wouldn’t
take an awful lot of research to get
a comprehensive list for all ver-
sions). In the case of Delphi written
apps, do not go for TApplication as
a class name, since every Delphi
app has a window of that class. Try
another class name that will
hopefully be unique.

So the speed buttons in the
application could have code rather
like this:

RunOrSwitchToApp(
 ’c:\excel\excel.exe’,
 ’XLMAIN’)

where RunOrSwitchToApp is the
straightforward procedure in
Listing 6. ActivateWindow we have
seen before and RunApp simply calls
CreateProcess or WinExec depen-
dant upon platform. That leaves us
with an application that is not a
million miles away from the
Microsoft Office Manager (or
MOM): see Figure 7. Obviously this
is a simple example, you wouldn’t
want to hardcode paths in your
own applications.

Update:
Executing Methods By Name
Issue 21’s entry Poor Person’s
Polymorphism showed one way of
executing arbitrary routines de-
pendant upon some (ordinal)
value. It was suggested that typi-
cally you could not take a string
and call the procedure whose
name it held because procedure
names are stripped out by the
compiler. This is generally true,

procedure RunOrSwitchToApp(
 const AppPath: String;
 ClassName: PChar);
begin
 try
 ActivateWindow(nil, ClassName)
 except
 RunApp(AppPath)
 end
end;

➤ Listing 6

type
 TForm1 = class(TForm)
 Button1: TButton;
 Button2: TButton;
 Button3: TButton;
 procedure Button1Click(Sender: TObject);
 procedure Button2Click(Sender: TObject);
 procedure Button3Click(Sender: TObject);
 private
 public
 published
 procedure MyRoutine(const Msg: string);
 end;
 TCustomProc = procedure (const Msg: string) of object;
...
procedure TForm1.MyRoutine(const Msg: string);
begin
 MessageDlg(Msg, mtInformation, [mbOk], 0)
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 ShowMessage(’A button was pushed... or was it?’)
end;
procedure TForm1.Button2Click(Sender: TObject);
var Proc: TNotifyEvent;
begin
 @Proc := MethodAddress(’Button1Click’);
 if Assigned(Proc) then
 Proc(nil);
end;
procedure TForm1.Button3Click(Sender: TObject);
var Proc: TCustomProc;
begin
 @Proc := Self.MethodAddress(’MyRoutine’);
 if Assigned(Proc) then
 Proc(’Hello world’);
end;

➤ Listing 7

➤ Figure 6

➤ Figure 7

58 The Delphi Magazine Issue 23

but there is an exception for published methods. RTTI
(run-time type information) is generated for anything
in a class’s published section so that your application
can use the textual references in the DFM file and map
back to real classes, properties and methods (event
handlers). Remember that the untitled section of a
class that Delphi maintains has the same attributes as
a published section.

With this information, we can take advantage of it
ourselves. If we wish to execute a published method,
given its name in a string, we can use the TObject
method MethodAddress to give us its address. All that is
then required is to typecast the returned pointer to an
appropriate method pointer type and we can invoke it
successfully.

All event handlers generated by the Object Inspector
are published methods, but you can also place your
own methods in a form’s published section. Don’t use
the unnamed section that Delphi uses: make your own
with the published keyword. Listing 7 shows some code
from the sample CALLER.DPR project.

Acknowledgements
Thanks to John O’Connell for help with parts of this
month’s column.

July 1997 The Delphi Magazine 59

	Message Dialog Buttons
	Win32 Data Type Problems
	Delphi 1 Stay On Top
	Delphi 32 Locate Method
	Win32 Help
	ShowWindow Problem
	Hi MOM!
	Update: Executing Methods By Name
	Acknowledgements

